Part Number Hot Search : 
01201 002228 70N6T 124534N 74404 4HCT3 BYZ35A22 18N50
Product Description
Full Text Search
 

To Download MW7IC2750GNR1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 1 rf device data freescale semiconductor rf ldmos wideband integrated power amplifiers the mw7ic2750n wideband integrated circuit is designed with on--chip matching that makes it usable from 2300--2700 mhz. this multi--stage structure is rated for 26 to 32 volt operation and covers all typical cellular base station modulation formats. ? typical wimax performance: v dd =28volts,i dq1 = 160 ma, i dq2 = 550 ma, p out = 8 watts avg., f = 2700 mhz, ofdm 802.16d, 64 qam 3 / 4 ,4bursts, 10 mhz channel bandwidth, input signal par = 9.5 db @ 0.01% probability on ccdf. power gain ? 26 db power added efficiency ? 17% device output signal par ? 8. 6 db @ 0.01% probability on ccdf acpr @ 8.5 mhz offset ? --49 dbc in 1 mhz channel bandwidth ? capable of handling 10:1 vswr, @ 32 vdc, 2600 mhz, 80 watts cw output power (3 db input overdrive from rated p out ) ? stable into a 3:1 vswr. all spurs below --60 dbc @ 1 mw to 80 w cw p out ? typical p out @ 1 db compression point ? 50 watts cw driver applications ? typical wimax performance: v dd =28volts,i dq1 = 160 ma, i dq2 = 550 ma, p out = 4 watts avg., f = 2700 mhz, ofdm 802.16d, 64 qam 3 / 4 ,4bursts, 10 mhz channel bandwidth, input signal par = 9.5 db @ 0.01% probability on ccdf. power gain ? 26 db power added efficiency ? 11% device output signal par ? 9. 2 db @ 0.01% probability on ccdf acpr @ 8.5 mhz offset ? --57 dbc in 1 mhz channel bandwidth features ? 100% par tested for guaranteed output power capability ? characterized with series equival ent large--signal impedance parameters and common source s--parameters ? on--chip matching (50 ohm input, dc blocked) ? integrated quiescent current te mperature compensation with enable/disable function (1) ? integrated esd protection ? greater negative gate--source voltage range for improved class c operation ? 225 c capable plastic package ? rohs compliant ? in tape and reel. r1 suffix = 500 units, 44 mm tape width, 13 inch reel. 1. refer to an1977, quiescent current thermal tracking circ uit in the rf integrated circuit family and to an1987, quiescent current control for the rf integrated circuit device family . go to http://www.freescale.com/rf. select documentation/application notes -- an1977 or an1987. document number: mw7ic2750n rev. 3, 3/2011 freescale semiconductor technical data mw7ic2750nr1 MW7IC2750GNR1 mw7ic2750nbr1 2500--2700 mhz, 8 w avg., 28 v wimax rf ldmos wideband integrated power amplifiers case 1618--02 to--270 wb--14 plastic mw7ic2750nr1 case 1621--02 to--270 wb--14 gull plastic MW7IC2750GNR1 case 1617--02 to--272 wb--14 plastic mw7ic2750nbr1 figure 1. functional block diagram figure 2. pin connections quiescent current temperature compensation (1) v ds1 rf in v gs1 rf out /v ds2 v gs2 note: exposed backside of the package is the source terminal for the transistors. v ds1 nc rf in nc rf out /v ds2 1 2 3 4 7 8 14 v gs1 9 10 11 v gs2 v gs1 nc nc v gs2 rf in v ds1 rf out /v ds2 13 6 12 5 (top view) ? freescale semiconductor, inc., 2008, 2010--2011. a ll rights reserved.
2 rf device data freescale semiconductor mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 table 1. maximum ratings rating symbol value unit drain--source voltage v ds --0.5, +65 vdc gate--source voltage v gs --6.0, +10 vdc operating voltage v dd 32, +0 vdc storage temperature range t stg -- 65 to +150 c case operating temperature t c 150 c operating junction temperature (1,2) t j 225 c input power p in 30 dbm table 2. thermal characteristics characteristic symbol value (2,3) unit thermal resistance, junction to case cw application stage 1, 28 vdc, i dq1 = 160 ma (case temperature 80 c, p out = 50 w cw) stage 2, 28 vdc, i dq2 = 550 ma final application stage 1, 28 vdc, i dq1 = 160 ma (case temperature 70 c, p out = 8 w cw) stage 2, 28 vdc, i dq2 = 550 ma driver application stage 1, 28 vdc, i dq1 = 160 ma (case temperature 65 c, p out = 4 w cw) stage 2, 28 vdc, i dq2 = 550 ma r jc 3.0 0.7 2.9 0.7 2.8 0.7 c/w table 3. esd protection characteristics test methodology class human body model (per jesd22--a114) 1c (minimum) machine model (per eia/jesd22--a115) a (minimum) charge device model (per jesd22--c101) iii (minimum) table 4. moisture sensitivity level test methodology rating package peak temperature unit per jesd 22--a113, ipc/jedec j--std--020 3 260 c table 5. electrical characteristics (t a =25 c unless otherwise noted) characteristic symbol min typ max unit stage 1 ? off characteristics zero gate voltage drain leakage current (v ds =65vdc,v gs =0vdc) i dss ? ? 10 adc zero gate voltage drain leakage current (v ds =28vdc,v gs =0vdc) i dss ? ? 1 adc gate--source leakage current (v gs =5vdc,v ds =0vdc) i gss ? ? 1 adc stage 1 ? on characteristics gate threshold voltage (v ds =10vdc,i d =46 adc) v gs(th) 1 2 3 vdc gate quiescent voltage (v dd =28vdc,i dq1 = 160 ma, measured in functional test) v gs(q) 3 3.8 4.5 vdc stage 1 ? dynamic characteristics (4) input capacitance (v ds =28vdc,v gs =0vdc 30 mv(rms)ac @ 1 mhz) c iss ? 550 ? pf 1. continuous use at maximum temperature will affect mttf. 2. mttf calculator available at http://www.freescale.com/rf. sele ct software & tools/development t ools/calculators to access mttf calculators by product. 3. refer to an1955, thermal measurement methodology of rf power amplifiers. go to http://www.freescale.com/rf . select documentation/application notes -- an1955. 4. part internally matched both on input and output. (continued)
mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 3 rf device data freescale semiconductor table 5. electrical characteristics (t a =25 c unless otherwise noted) (continued) characteristic symbol min typ max unit stage 2 ? off characteristics zero gate voltage drain leakage current (v ds =65vdc,v gs =0vdc) i dss ? ? 10 adc zero gate voltage drain leakage current (v ds =28vdc,v gs =0vdc) i dss ? ? 1 adc gate--source leakage current (v gs =5vdc,v ds =0vdc) i gss ? ? 1 adc stage 2 ? on characteristics gate threshold voltage (v ds =10vdc,i d = 185 adc) v gs(th) 1 2 3 vdc gate quiescent voltage (v dd =28vdc,i dq2 = 550 ma, measured in functional test) v gs(q) 2.8 3.6 4.3 vdc drain--source on--voltage (v gs =10vdc,i d =1adc) v ds(on) 0.1 0.12 0.8 vdc stage 2 ? dynamic characteristics (1) reverse transfer capacitance (v ds =28vdc 30 mv(rms)ac @ 1 mhz, v gs =0vdc) c rss ? 0.68 ? pf output capacitance (v ds =28vdc 30 mv(rms)ac @ 1 mhz, v gs =0vdc) c oss ? 220 ? pf functional tests (in freescale test fixture, 50 ohm system) v dd =28vdc,i dq1 = 160 ma, i dq2 = 550 ma, p out = 8 w avg., f = 2700 mhz, wimax, ofdm 802.16d, 64 qam 3 / 4 , 4 bursts, 10 mhz channel bandwidth, input signal par = 9.5 db @ 0.01% probability on ccdf. acpr measured in 1 mhz channel bandwidth @ 8.5 mhz offset. power gain g ps 24 26 31 db power added efficiency pae 15 17 ? % output peak--to--average ratio @ 0.01% probability on ccdf par 7.8 8.6 ? db adjacent channel power ratio acpr ? -- 4 9 -- 4 5 dbc input return loss irl ? -- 1 2 -- 1 0 db typical performances ofdm signal ? 10 mhz channel bandwidth (in freescale test fixture, 50 ohm system) v dd =28vdc,i dq1 = 160 ma, i dq2 = 550 ma, p out = 8 w avg., f = 2700 mhz, wimax, ofdm 802.16d, 64 qam 3 / 4 , 4 bursts, 10 mhz channel bandwidth, input signal par = 9.5 db @ 0.01% probability on ccdf. relative constellation error (2) rce ? -- 3 3 ? db error vector magnitude (2) evm ? 2.3 ? %rms typical performances ofdm signal ? 7 mhz channel bandwidth (in freescale test fixture, 50 ohm system) v dd =28vdc,i dq1 = 160 ma, i dq2 = 550 ma, p out = 8 w avg., f = 2700 mhz, wimax, ofdm 802.16d, 64 qam 3 / 4 , 4 bursts, 7 mhz channel bandwidth, input signal par = 9.5 db @ 0.01% probability on ccdf. mask system type g point b at 3.5 mhz offset point c at 5 mhz offset point d at 7.4 mhz offset point e at 14 mhz offset point f at 17.5 mhz offset mask ? ? ? ? ? -- 2 7 -- 4 0 -- 4 3 -- 5 8 -- 6 3 ? ? ? ? ? dbc relative constellation error (2) rce ? -- 3 3 ? db error vector magnitude (2) evm ? 2.3 ? %rms 1. part internally matched both on input and output. 2. rce = 20log(evm/100) (continued)
4 rf device data freescale semiconductor mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 table 5. electrical characteristics (t a =25 c unless otherwise noted) (continued) characteristic symbol min typ max unit typical performances (in freescale test fixture, 50 ohm system) v dd =28vdc,i dq1 = 160 ma, i dq2 = 550 ma, 2700 mhz bandwidth p out @ 1 db compression point, cw p1db ? 55 ? w imd symmetry @ 50 w pep, p out where imd third order intermodulation ? 30 dbc (delta imd third order intermodulation between upper and lower sidebands > 2 db) imd sym ? 60 ? mhz vbw resonance point (imd third order intermodulation inflection point) vbw res ? 50 ? mhz gain flatness in 200 mhz bandwidth @ p out =8wavg. g f ? 0.5 ? db average deviation from linear phase in 200 mhz bandwidth @p out =50wcw ? 1.1 ? average group delay @ p out = 50 w cw, f = 2600 mhz delay ? 2.3 ? ns part--to--part insertion phase variation @ p out =50wcw, f = 2600 mhz, six sigma window ? ? 38.7 ? gain variation over temperature (--30 cto+85 c) ? g ? 0.037 ? db/ c output power variation over temperature (--30 cto+85 c) ? p1db ? 0.005 ? db/ c typical driver performances (in freescale test fixture, 50 ohm system) v dd =28vdc,i dq1 = 160 ma, i dq2 = 550 ma, p out =4wavg., f = 2700 mhz, wimax, ofdm 802.16d, 64 qam 3 / 4 , 4 bursts, 10 mhz channel bandwidth, input signal par = 9.5 db @ 0.01% probability on ccdf. acpr measured in 1 mhz channel bandwidth @ 8.5 mhz offset. power gain g ps ? 26 ? db power added efficiency pae ? 11 ? % output peak--to--average ratio @ 0.01% probability on ccdf par ? 9.2 ? db adjacent channel power ratio acpr ? -- 5 7 ? dbc input return loss irl ? -- 1 3 ? db relative constellation error @ p out =2.5wavg. (1) rce ? -- 3 9 ? db 1. rce = 20log(evm/100)
mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 5 rf device data freescale semiconductor figure 3. mw7ic2750nr1(gnr1)( nbr1) test circuit schematic rf input v gg2 z6 rf output c15 v dd2 1 2 3 4 5 8 9 14 12 11 10 nc nc nc dut z12 quiescent current temperature compensation nc z11 r1 6 7 13 c7 z10 z9 c9 c14 c13 c8 v dd1 c11 c10 z2 z3 z8 0.417 x 0.064 microstrip z9 1.137 x 0.064 microstrip z10 0.293 x 0.064 microstrip z11, z12 0.615 x 0.095 microstrip pcb rogers ro4350b, 0.030 , r =3.5 z1 0.662 x 0.064 microstrip z2 1.530 x 0.064 microstrip z3 0.126 x 0.060 microstrip z4, z5 0.771 x 0.046 microstrip z6 0.192 x 0.860 microstrip z7 0.280 x 0.719 microstrip z4 c5 c3 nc r2 v gg1 c1 z1 nc c2 c4 z5 c6 z7 c12 z8 table 6. mw7ic2750nr1(gnr1)( nbr1) test circuit component designations and values part description part number manufacturer c1 0.8 pf chip capacitor atc100b0r8bt500xt atc c2, c3, c13, c14 10 f, 50 v chip capacitors grm55dr61h106ka88b murata c4, c5, c8, c9, c15 5.1 pf chip capacitors atc100b5r1ct500xt atc c6, c7 1 f, 100 v chip capacitors grm32er72a105ka01l murata c10, c11 0.2 pf chip capacitors atc100b0r2bt500xt atc c12 0.5 pf chip capacitor atc100b0r5bt500xt atc r1, r2 1k ? , 1/4 w chip resistors crcw12061001fkea vishay
6 rf device data freescale semiconductor mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 figure 4. mw7ic2750nr1(gnr1)(nbr1 ) test circuit component layout cut out area mw7ic2750n rev. 6 c2 c4 c6 v g2 v g1 v d1 c1 v g1 v g2 v d1 c3 c5 c7 r1 r2 c14 c11 c9 c12 c15 c10 c8 c13
mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 7 rf device data freescale semiconductor typical characteristics irl, input return loss (db) 2500 irl g ps acpr f, frequency (mhz) figure 5. wimax broadband performance @ p out = 8 watts avg. -- 2 2 -- 1 4 -- 1 6 -- 1 8 -- 2 0 25 27 26.8 26.6 -- 5 5 19 18 17 16 -- 5 0 -- 5 1 -- 5 2 -- 5 3 g ps , power gain (db) 26.4 26.2 25.8 25.6 25.4 25.2 2525 2550 2575 2600 2625 2650 2675 2700 15 -- 5 4 -- 2 4 parc parc (db) -- 1 . 4 -- 0 . 6 -- 0 . 8 -- 1 -- 1 . 2 -- 1 . 6 acpr (dbc) 26 irl, input return loss (db) 2500 irl g ps acpr f, frequency (mhz) figure 6. wimax broadband performance @ p out = 4 watts avg. -- 2 1 -- 1 3 -- 1 5 -- 1 7 -- 1 9 25 27 26.8 26.6 -- 6 1 12.5 11.5 10.5 9.5 -- 5 6 -- 5 7 -- 5 8 -- 5 9 g ps , power gain (db) 26.4 26.2 25.8 25.6 25.4 25.2 2525 2550 2575 2600 2625 2650 2675 2700 8.5 -- 6 0 -- 2 3 parc parc (db) -- 0 . 8 0 -- 0 . 2 -- 0 . 4 -- 0 . 6 -- 1 acpr (dbc) 26 figure 7. power gain versus output power @i dq1 = 160 ma 100 22 29 1 i dq2 = 826 ma 688 ma p out , output power (watts) cw v dd =28vdc i dq1 = 160 ma f = 2600 mhz 275 ma 550 ma 27 26 25 10 g ps , power gain (db) 28 412 ma 24 figure 8. power gain versus output power @i dq2 = 550 ma 22 29 1 i dq1 = 240 ma p out , output power (watts) cw 80 ma 27 26 25 10 100 g ps , power gain (db) 28 120 ma v dd =28vdc i dq2 = 550 ma f = 2600 mhz 24 160 ma 200 ma 23 0.1 23 0.1 v dd =28vdc,p out =8w(avg.),i dq1 = 160 ma i dq2 = 550 ma, ofdm 802.16d, 64 qam 3 / 4 ,4bursts,10mhz channel bandwidth, input signal par = 9.5 db @ 0.01% probabilit y on ccdf v dd =28vdc,p out =4w(avg.),i dq1 = 160 ma i dq2 = 550 ma, ofdm 802.16d, 64 qam 3 / 4 ,4bursts 10 mhz channel bandwidth, input signal par = 9.5 db @ 0.01% pr obabilit y on ccdf pae pae, power added efficiency (%) pae, power added efficiency (%) pae
8 rf device data freescale semiconductor mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 typical characteristics figure 9. intermodulation distortion products versus tone spacing two--tone spacing (mhz) 10 -- 6 0 0 im3--u -- 2 0 -- 3 0 -- 5 0 100 imd, intermodulatio n distortion (dbc) -- 4 0 im3--l im5--u im5--l im7--l im7--u v dd =28vdc,p out = 53 w (pep), i dq1 = 160 ma i dq2 = 550 ma, two--tone measurements (f1 + f2)/2 = center frequency of 2600 mhz figure 10. output peak--to--average ratio compression (parc) versus output power 1 p out , output power (watts) -- 1 -- 3 -- 5 15 -- 2 -- 4 output compression at 0.01% probability on ccdf (db) 5 20 25 30 10 40 30 25 20 15 acpr parc acpr (dbc) -- 6 0 -- 3 0 -- 3 5 -- 4 0 -- 5 0 -- 4 5 -- 5 5 27.5 g ps , power gain (db) 27 25 24.5 70 0 45 -- 6 0 -- 1 5 p out , output power (watts) avg. wimax t c =--40 _ c 25 _ c 85 _ c 10 1 40 35 30 25 20 -- 2 0 -- 2 5 -- 3 0 -- 3 5 -- 4 0 acpr (dbc) g ps -- 4 0 _ c 25 _ c 85 _ c acpr v dd =28vdc,i dq1 = 160 ma, i dq2 = 550 ma f = 2600 mhz, ofdm 802.16d, 64 qam 3 / 4 , 4 bursts, 10 mhz channel bandwidth, input signal par = 9.5 db @ 0.01% pr obabilit y on ccdf 15 10 -- 4 5 -- 5 0 figure 11. wimax, acpr, power gain and power added efficiency versus output power 1 10 35 --1 db = 8.41 w --2 db = 13.08 w -- 1 0 0 26.5 26 25.5 --3 db = 18.16 w 5 -- 5 5 25 _ c -- 4 0 _ c i dq2 = 550 ma, f = 2600 mhz, ofdm 802.16d v dd =28vdc,i dq1 = 160 ma 64 qam 3 / 4 , 4 bursts, 10 mhz channel bandwidth input signal par = 9.5 d b @ 0.01% pr obabilit y on ccdf pae, power added eficiency (%) pae, power added efficiency (%), g ps , power gain (db) pae g ps pae
mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 9 rf device data freescale semiconductor typical characteristics 3400 -- 2 0 30 1800 -- 4 0 10 s21 f, frequency (mhz) figure 12. broadband frequency response s11 0 20 -- 1 0 10 -- 2 0 0 -- 3 0 -- 1 0 2800 2600 2400 2200 2000 s11 (db) s21 (db) v dd =28vdc i dq1 = 160 ma, i dq2 = 550 ma 3000 3200 figure 13. mttf versus junction temperature this above graph displays calculated mttf in hours when the device is operated at v dd =28vdc,p out = 8 w avg., and pae = 17%. mttf calculator available at http://www.freescale.com/rf. select software & tools/development tools/calculators to access mttf calculators by product. 250 10 9 90 t j , junction temperature ( c) 10 8 10 7 10 5 110 130 150 170 190 mttf (hours) 210 230 2nd stage 1st stage 10 6
10 rf device data freescale semiconductor mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 wimax test signal 10 0.0001 100 0 peak--to--average (db) figure 14. ofdm 802.16d test signal 10 1 0.1 0.01 0.001 24 68 probability (%) input signal -- 6 0 -- 1 0 (db) -- 2 0 -- 3 0 -- 4 0 -- 5 0 -- 7 0 -- 8 0 -- 9 0 10 mhz channel bw 20 515 10 0 -- 5 -- 1 0 -- 2 0 f, frequency (mhz) figure 15. wimax spectrum mask specifications -- 1 5 acpr in 1 mhz integrated bw acpr in 1 mhz integrated bw ofdm 802.16d, 64 qam 3 / 4 ,4bursts 10 mhz channel bandwidth, input signal par = 9.5 db @ 0. 01% probab ility on ccdf
mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 11 rf device data freescale semiconductor z o =50 ? z load f = 2700 mhz f = 2500 mhz z in f = 2700 mhz f = 2500 mhz v dd =28vdc,i dq1 = 160 ma, i dq2 = 550 ma, p out =8wavg. f mhz z in ? z load ? 2500 49.58 + j35.82 3.52 -- j1.79 2525 50.78 + j36.71 3.46 -- j1.82 2550 52.04 + j37.58 3.37 -- j1.86 2575 53.39 + j38.45 3.24 -- j1.88 2600 54.82 + j39.30 3.09 -- j1.87 2625 56.35 + j40.14 2.94 -- j1.84 2650 57.96 + j40.95 2.77 -- j1.77 2675 59.68 + j41.74 2.60 -- j1.66 2700 61.50 + j42.49 2.44 -- j1.56 z in = device input impedance as measured from gate to ground. z load = test circuit impedance as measured from drain to ground. figure 16. series equivalent source and load impedance z in z load device under test output matching network
12 rf device data freescale semiconductor mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 table 7. common source s--parameters (v dd =28v,i dq1 = 160 ma, i dq2 = 550 ma, t a =25 c, 50 ohm system) f mhz s 11 s 21 s 12 s 22 |s 11 | ? |s 21 | ? |s 12 | ? |s 22 | ? 1500 0.754 78.5 0.001 --17.9 0.000774 17.4 0.994 174.5 1550 0.734 70.1 0.001 --118.8 0.000326 85.4 0.993 175.3 1600 0.716 61.7 0.003 --116.5 0.000392 58.7 0.998 174.6 1650 0.697 53.4 0.009 --135.3 0.000268 27.8 0.997 173.9 1700 0.677 45.1 0.024 --152.3 0.000211 --33.8 0.996 172.9 1750 0.651 36.6 0.064 --179.9 0.000309 148.0 0.991 171.7 1800 0.619 27.6 0.141 146.0 0.000599 148.7 0.981 170.3 1850 0.578 17.7 0.255 113.0 0.000732 142.6 0.970 169.0 1900 0.527 5.6 0.425 84.8 0.000734 149.1 0.957 167.3 1950 0.462 -- 9 . 3 0.701 61.4 0.000911 144.7 0.941 165.6 2000 0.392 --27.8 1.237 39.8 0.00154 174.4 0.924 163.6 2050 0.312 --51.0 2.342 15.9 0.00286 159.0 0.895 160.9 2100 0.218 --74.1 4.772 -- 1 1 . 8 0.00377 142.2 0.843 156.6 2150 0.139 --77.4 11.680 --51.5 0.00588 128.7 0.691 149.4 2200 0.426 --69.8 27.658 --129.7 0.00919 73.9 0.342 --169.4 2250 0.490 --123.5 21.740 150.4 0.00545 38.1 0.800 --166.9 2300 0.416 --146.4 16.087 106.5 0.00314 33.9 0.864 --174.9 2350 0.352 --160.1 13.279 71.6 0.00239 24.9 0.879 --177.0 2400 0.321 --166.6 11.654 41.9 0.00175 33.1 0.891 --177.5 2450 0.274 --173.2 10.543 13.4 0.00197 27.7 0.908 --177.4 2500 0.233 --177.6 9.748 --13.4 0.00181 34.5 0.924 --177.5 2550 0.178 179.0 8.983 --40.5 0.00204 31.5 0.943 --177.7 2600 0.123 --167.7 8.199 --65.8 0.00218 35.6 0.957 --178.0 2650 0.108 --148.8 7.452 --89.9 0.00208 33.2 0.970 --178.7 2700 0.121 --132.6 6.730 --113.1 0.00198 23.8 0.978 --179.6 2750 0.146 --119.9 6.008 --135.3 0.00191 31.0 0.985 179.4 2800 0.184 --119.9 5.323 --156.1 0.00211 23.7 0.987 178.3 2850 0.214 --121.0 4.700 --175.6 0.00159 15.5 0.987 177.3 2900 0.261 --127.6 4.109 166.0 0.00205 14.6 0.985 176.3 2950 0.316 --134.0 3.591 149.0 0.00171 19.2 0.984 175.4 3000 0.372 --141.4 3.130 133.3 0.00103 16.7 0.984 174.5 3050 0.430 --150.2 2.733 118.1 0.00095 26.4 0.984 173.8 3100 0.485 --158.9 2.388 103.6 0.00103 36.9 0.984 173.2 3150 0.534 --166.3 2.091 90.1 0.00108 24.1 0.985 172.7 3200 0.585 --172.7 1.846 77.3 0.00127 47.6 0.984 172.4 3250 0.625 --178.0 1.635 65.2 0.00119 57.1 0.986 172.1 3300 0.657 177.3 1.472 52.9 0.00132 53.2 0.985 171.9 3350 0.686 173.2 1.342 40.8 0.00200 53.8 0.985 171.7 (continued)
mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 13 rf device data freescale semiconductor table 7. common source s--parameters (v dd =28v,i dq1 = 160 ma, i dq2 = 550 ma, t a =25 c, 50 ohm system) (continued) f mhz s 11 s 21 s 12 s 22 |s 11 | ? |s 21 | ? |s 12 | ? |s 22 | ? 3400 0.702 169.7 1.243 28.4 0.00230 54.4 0.982 171.3 3450 0.718 166.7 1.193 10.8 0.00211 62.5 0.947 170.1 3500 0.721 164.7 0.937 3.1 0.00233 24.3 0.976 173.0 3550 0.746 162.0 0.914 -- 7 . 9 0.00213 51.7 0.981 171.9 3600 0.758 158.9 0.857 --21.4 0.00236 55.6 0.978 171.1
14 rf device data freescale semiconductor mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 alternative peak tune load pull characteristics 53 p3db = 49.27 dbm (85 w) p in , input power (dbm) 51 49 47 45 36 actual ideal p1db = 48.21 dbm (66 w) 52 50 46 48 44 9 p out , output power (dbm) note: load pull test fixture tuned for peak p1db output power @ 28 v v dd =28vdc,i dq1 = 160 ma, i dq2 = 550 ma pulsed cw, 10 sec(on), 10% duty cycle, f = 2500 mhz 43 42 41 40 39 38 37 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 test impedances per compression level z source ? z load ? p1db 28.46 + j5.15 1.67 -- j1.53 figure 17. pulsed cw output power versus input power @ 28 v @ 2500 mhz 53 p3db = 48.62 dbm (73 w) p in , input power (dbm) 51 49 47 45 36 actual ideal p1db = 47.59 dbm (57 w) 52 50 46 48 44 9 p out , output power (dbm) note: load pull test fixture tuned for peak p1db output power @ 28 v v dd =28vdc,i dq1 = 160 ma, i dq2 = 550 ma pulsed cw, 10 sec(on), 10% duty cycle, f = 2700 mhz 43 42 41 40 39 38 37 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 test impedances per compression level z source ? z load ? p1db 36.24 + j1.75 1.19 -- j1.29 figure 18. pulsed cw output power versus input power @ 28 v @ 2700 mhz
mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 15 rf device data freescale semiconductor package dimensions
16 rf device data freescale semiconductor mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1
mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 17 rf device data freescale semiconductor
18 rf device data freescale semiconductor mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1
mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 19 rf device data freescale semiconductor
20 rf device data freescale semiconductor mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1
mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 21 rf device data freescale semiconductor
22 rf device data freescale semiconductor mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1
mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 23 rf device data freescale semiconductor
24 rf device data freescale semiconductor mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 product documentation, tools and software refer to the following documents to aid your design process. application notes ? an1907: solder reflow attach method for high power rf devices in plastic packages ? an1955: thermal measurement methodology of rf power amplifiers ? an1977: quiescent current thermal tracking circuit in the rf integrated circuit family ? an1987: quiescent current control for the rf integrated circuit device family ? an3263: bolt down mounting method for high power rf transistors and rfics in over--molded plastic packages ? an3789: clamping of high power rf transistors and rfics in over--molded plastic packages engineering bulletins ? eb212: using data sheet impedances for rf ldmos devices software ? electromigration mttf calculator ? rf high power model ? .s2p file development tools ? printed circuit boards for software and tools, do a part number search at http://www.fr eescale.com, and select the ?part number? link. go to the software & tools tab on the part?s product summary page to download the respective tool. revision history the following table summarizes revisions to this document. revision date description 0 may 2008 ? initial release of data sheet 1 oct. 2008 ? corrected footnote reference in typical performances ofdm signal -- 10 mhz bandwidth table, p. 3 ? updated fig. 13, mttf versus junction temper ature, to correct a calculation error, p. 9 2 feb. 2010 ? modified vswr rating to show the 3 db overdrive capability, p. 1 ? corrected maximum input power level to the tested value, from 13 dbm to 25 dbm in maximum ratings table, p. 2 ? fig. 3, test circuit schematic, corrected rogers ro4350b dielectric constant from 3.66 r to 3.5 r ,p.5 ? added an3789, clamping of high power rf transistors and rfics in over--molded plastic packages to product documentation, application notes, p. 24 3 mar. 2011 ? table 1, maximum ratings, increased input power from 25 dbm to 30 dbm to reflect the true capability of the device, p. 2
mw7ic2750nr1 mw7ic 2750gnr1 mw7ic2750nbr1 25 rf device data freescale semiconductor information in this document is provided solely to enable system and software implementers to use freescale semiconductor products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. freescale semiconductor reserves the right to make changes without further notice to any products herein. freescale semiconductor makes no warranty, representation or guarantee regar ding the suitab ility of its products for any particula r purpose, nor does freescale semiconductor assu me any liability ari sing out of the app lication or use of any product or circuit, and specifically discl aims any and all liability, including without limitation consequential or incidental damages. ?typical? parameters that may be provided in freescale semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including ?typicals?, must be validated for each customer application by customer?s technical experts. freescale semiconductor does not convey any license under its patent rights nor the rights of others. freescale semiconductor products are not designed, intended, or authorized for use as components in systems int ended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the freescale semiconductor product could create a situation where personal injury or death may occur. should buyer purchase or use freescale semiconductor products for any such unintended or unauthorized application, buyer shall indemnify and hold freescale semiconductor and its officers, employees, subs idiaries, affiliate s, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that freescale semiconductor was negligent regarding the design or manufacture of the part. freescale t and the freescale logo are trademarks of freescale semiconductor, inc. all other product or service names are the property of their respective owners. ? freescale semiconductor, inc. 2008, 2010--2011. all rights reserved. how to reach us: home page: www.freescale.com web support: http://www.freescale.com/support usa/europe or locations not listed: freescale semiconductor, inc. technical information center, el516 2100 east elliot road tempe, arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support europe, middle east, and africa: freescale halbleiter deutschland gmbh technical information center schatzbogen 7 81829 muenchen, germany +44 1296 380 456 (english) +46 8 52200080 (english) +49 89 92103 559 (german) +33169354848(french) www.freescale.com/support japan: freescale semiconductor japan ltd. headquarters arco tower 15f 1--8--1, shimo--meguro, meguro--ku, tokyo 153--0064 japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com asia/pacific: freescale semiconductor china ltd. exchange building 23f no. 118 jianguo road chaoyang district beijing 100022 china +86 10 5879 8000 support.asia@freescale.com for literature requests only: freescale semiconductor literature distribution center 1--800--441--2447 or +1--303--675--2140 fax: +1--303--675--2150 ldcforfreescalesemiconductor@hibbertgroup.com document number: mw7ic2750n rev. 3, 3/2011


▲Up To Search▲   

 
Price & Availability of MW7IC2750GNR1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X